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A B S T R A C T

Urban geometry and materials combine to create complex spatial, temporal and directional patterns of longwave
infrared (LWIR) radiation. Effective anisotropy (or directional variability) of thermal radiance causes remote
sensing (RS) derived urban surface temperatures to vary with RS view angles. Here a new and novel method to
resolve effective thermal anisotropy processes from LWIR camera observations is demonstrated at the
Comprehensive Outdoor Scale MOdel (COSMO) test site. Pixel-level differences of brightness temperatures reach
18.4 K within one hour of a 24-h study period. To understand this variability, the orientation and shadowing of
surfaces is explored using the Discrete Anisotropic Radiative Transfer (DART) model and Blender three-di-
mensional (3D) rendering software. Observed pixels and the entire canopy surface are classified in terms of
surface orientation and illumination. To assess the variability of exitant longwave radiation (MLW) from the 3D
COSMO surface (MLW

D3 ), the observations are prescribed based on class. The parameterisation is tested by si-
mulating thermal images using a camera view model to determine camera perspectives of MLW

D3 fluxes. The mean
brightness temperature differences per image (simulated and observed) are within 0.65 K throughout a 24-h
period. Pixel-level comparisons are possible with the high spatial resolution of MLW

D3 and DART camera view
simulations. At this spatial scale (< 0.10m), shadow hysteresis, surface sky view factor and building edge effects
are not completely resolved by MLW

D3 . By simulating apparent brightness temperatures from multiple view di-
rections, effective thermal anisotropy of MLW

D3 is shown to be up to 6.18 K. The developed methods can be
extended to resolve some of the identified sources of sub-facet variability in realistic urban settings. The ex-
tension of DART to the interpretation of ground-based RS is shown to be promising.

1. Introduction

Urban surface temperature (Ts) plays a significant role in the urban
surface energy balance as it is central to longwave radiation (LW),
turbulent sensible heat and storage heat fluxes. Remote sensing (RS)
methods have the potential to provide Ts at large spatial scales for
understanding exchanges of sensible heat (e.g. Voogt and Grimmond,
2000; Xu et al., 2008), the thermal comfort of city dwellers (Thorsson
et al., 2004), and the urban surface heat island phenomenon (Huang
et al., 2016; Kato and Yamaguchi, 2005; Roth et al., 1989). Two major
challenges of urban thermal RS observations relate to the complex
three-dimensional (3D) urban surface form and material heterogeneity,

both causing large spatiotemporal variability of Ts (Voogt and Oke,
2003). Spatiotemporal variability of Ts is influenced by the relative
orientation of surfaces to the sun during the day, and sky at night
(Voogt and Oke, 2003). The diversity of thermal and radiative prop-
erties of surface materials causes additional variability (Voogt, 2008).
What results is a directional variability, or an effective thermal aniso-
tropy (Krayenhoff and Voogt, 2016), of broadband longwave radiation
(MLW, W m−2) from the urban canopy surface. The anisotropic behavior
of urban canopies is defined as “effective” to differentiate from thermal
anisotropy exhibited by individual surface components (Voogt and Oke,
1998). Effective thermal anisotropy clearly affects satellite measured
radiance, which is indicative of satellite derived longwave radiation

https://doi.org/10.1016/j.rse.2018.05.004
Received 13 December 2017; Received in revised form 2 May 2018; Accepted 3 May 2018

⁎ Corresponding author.
E-mail address: w.morrison@pgr.reading.ac.uk (W. Morrison).

Remote Sensing of Environment 215 (2018) 268–283

Available online 19 June 2018
0034-4257/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2018.05.004
https://doi.org/10.1016/j.rse.2018.05.004
mailto:w.morrison@pgr.reading.ac.uk
https://doi.org/10.1016/j.rse.2018.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2018.05.004&domain=pdf


(MLW
RS ). As a result, the apparent Ts can vary depending on view direc-

tion. MLW
RS can be described by:

∑=M M fLW
RS

i

n

LW i i,
(1)

where MLW,i is the exitant broadband longwave radiation from a given
canopy surface element i that comprises fraction f of the instrument
field of view (FOV). Out of the total number of canopy surface elements
n, MLW,i may be unique due to the highly variable radiative properties
associated with its surface temperature, emissivity (ε) and contributions
from longwave reflections. MLW

RS is also sensitive to urban canopy geo-
metry and to the specific view angle within each image swath. These
factors combine to form a view angle specific fi which translates to a
view angle specific value of MLW

RS . For example, fi for roof and tree tops
is generally overemphasised within MLW

RS for urban areas (Roth et al.,
1989). Corrections of effective thermal anisotropy are critical when
retrieving high-quality Ts products for urban environments at large
spatial scales from satellite-derived MLW

RS .
The impact of effective thermal anisotropy on MLW

RS has been studied
using various observation and modelling techniques. Observations from
airborne platforms (e.g. Lagouarde et al., 2004; Sugawara and
Takamura, 2006; Voogt and Oke, 1998) allow highly variable view
angles at scales representative of satellite pixel resolutions
(100m–1 km). However, cost and air traffic restrictions usually limit
these to short-term research campaigns. As obtaining different view
angles requires multiple flyovers (i.e. difficult to conduct simulta-
neously), sequential flyovers with one aircraft may temporally con-
found results. Thus, the directional variability of MLW

RS at a micro-
meteorological timeframe (sub-hourly) for energy exchange processes
(Christen et al., 2012) may be unresolved. Ground-based RS observa-
tions are interesting in that MLW can be resolved at high temporal re-
solutions (e.g. Christen et al., 2012) while resolving the individual facet
(e.g. roof, wall) and sub-facet scale classes of MLW,i that constitute the
structural and radiative characteristics of the urban canopy. For
ground-based RS, a challenge is to sample enough facets representative
of the complete 3D urban canopy at any one time. A single ground-
based measurement provides a highly directional sample at high spatial
resolution. Several ground-based sensors are required to sample facets
of all orientations, unless a single ground-based sensor is operated on a
rotating (e.g. Adderley et al., 2015) or mobile (e.g. Voogt and Oke,
1997) platform. As satellite based RS is also inherently biased by FOV,
it is important to be able to understand the nature of this bias.

Modelling can further help resolve the contribution of sub-facet
scale variability of MLW on effective thermal anisotropy. The nature of
effective thermal anisotropy and MLW

RS can be understood under con-
strained conditions at high temporal and spatial resolutions. Therefore,
modelling is considered key to progress (Voogt, 2008; Voogt and Oke,
2003). Approaches typically involve a parameterisation of surface
geometry, an energy balance model prescription of surface temperature
and sensor view modelling of MLW

RS to resolve MLW,i and fi (Eq. 1) for a
given surface-sensor viewing geometry. Surface temperatures can be
prescribed from 2D (Kusaka et al., 2001; Sugawara and Takamura,
2006; Voogt, 2008), 2.5D infinite street canyon (e.g. Lagouarde et al.,
2010) and 3D (Krayenhoff and Voogt, 2007, 2016; Soux et al., 2004)
energy balance simulations to estimate MLW,i (Eq. 1) at facet (e.g. sur-
face orientation, roof, ground) or sub-facet (e.g. insolation, material)
scales.

Few sensor-view modelling studies exist that prescribe MLW,i from
observations at facet and sub-facet scale, despite this complementing
and constraining energy balance simulations. Classifying surfaces
within ground-based RS source areas poses challenges because of the
potentially diverse viewing geometries, complex 3D urban canopy
structure, and low resolution of longwave infrared (LWIR) camera
imagery. Previously, the spatial frequency distributions of MLW de-
termined by ground-based LWIR imagery were used to infer canopy
surface classes (e.g. Voogt and Grimmond, 2000) or surface classes

were manually identified and extracted (e.g. Voogt, 2008). Manual
approaches based on broadband thermal imagery are limited when the
temperature contrast between facets is low (because of orientation or
material properties). Information at multiple wavelengths can be va-
luable to improve classification. With maturing of sensor view model-
ling, it is becoming a powerful tool to objectively classify surface ele-
ments captured by RS imagery. Previous studies interpreting ground-
based LWIR imagery have determined per-pixel path lengths for at-
mospheric correction of observations from on top of a high-rise building
in Berlin (Meier et al., 2011). The SUM surface-sensor-sun model (Soux
et al., 2004) enables sensor view modelling of MLW,i prescribed from
observations, limited to urban surface geometry resolved as regular
arrays of rectangular shaped buildings. Studies using SUM have pre-
scribed temperatures intermittently (e.g. Voogt, 2008) from ground-
based and airborne platforms observations. 3D rendering and editing
software and a 3D vector model have facilitated the classification of
ground-based LWIR imagery in a suburban area in Vancouver
(Adderley et al., 2015). Here, classified temperature “textures” were
gap-filled to enable extrapolation across the 3D vector model as a
complete brightness temperature product for sensor view modelling of
hemispherical radiometer measurements using a single LWIR camera
on a rotating mast.

In the current study, a flexible observational and modelling ap-
proach is developed to prescribe MLW from broadband longwave ra-
diation fluxes derived from static ground-based LWIR camera ob-
servations. A 3D distribution of exitant broadband longwave radiation
(MLW

D3 , W m−2) is constructed from observations. The approach involves
a novel method to classify each camera image. Pixels within each image
are associated with a specific surface class prior to observations being
extrapolated to all urban canopy surface elements in 3D. A “model
world” (MW) is used to process and interpret observations which en-
ables “real world” (RW) surfaces to be related to each camera image by
camera view modelling. It provides a robust and quantitative method to
interpret observations. Surface class i is determined in 3D space [i.e. i
(X, Y, Z)] and is then accurately mapped to the 2D (x, y) coordinates of
a camera image plane (IP) [i.e. i(x, y)].

Unique here is the camera view modelling used to interpret ob-
servations, as surface classes are determined at high temporal and
spatial resolution using surface geometry and shortwave (SW) radiative
characteristics for each time step. This is designed to ensure all canopy
surfaces are always accounted for when extrapolating observations over
the 3D urban surface. A potential constraint of highly directional
ground-based measurements is turned to an advantage by positioning
two cameras at opposing view angles. This permits a combined ob-
servational source area representative of all surface classes that con-
stitute the 3D urban surface. Extrapolated observations are compared
with original camera imagery. This is done by projecting the extra-
polated observations through the perspective of simulated cameras,
with modelled perspectives matching those seen by the original camera
imagery. This approach is unique in that the modelled perspectives are
shown to reproduce the perspectives of the original imagery at pixel
level and to a high degree of accuracy. Extrapolated observations have
potential as a tool for further sensor view modelling to explore the
impact of effective thermal anisotropy on directionally variable MLW

RS

products for any given surface-sensor configuration.
The observational setup (Section 2.1, Section 2.2), the classification

methods (Section 2.3, Section 2.4) and extrapolation (Section 3) of
observations are introduced. Results (Section 4) include evaluation of
proposed methods and demonstrate their benefits for application in
urban RS. It is concluded (Section 5) that the detailed modelling ap-
proach provides a valuable tool for future studies in real city settings.

2. Methods

LWIR camera observations are interpreted and estimated as MLW
D3 in

a MW environment (Fig. 1). Two LWIR cameras (Section 2.2) were
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installed on ground-based platforms above an urban test site (treated
here as the RW, Section 2.1) to capture spatial and temporal variability
of MLW that is representative of MLW

D3 . The MW surface geometry
(Section 2.3) and camera view (Section 2.4) components enable ex-
trapolation of RW observations to MLW

D3 (Section 3).

2.1. Real world site

The COSMO site (Kanda et al., 2007) is an outdoor scale model of an
urban canopy. It occupies an area of 100m×50m (Fig. 2) at the
Nippon Institute of Technology, Saitama prefecture, Japan (South East
corner: 36° 1′ 36.42″ N, 139° 42′ 18.45″ E). The simple repeating
geometry consists of 1.5 m cubic concrete blocks (with 0.1 m thick
walls) with an even 1.5 m spacing (Fig. 2d). The long axis for the
32×16 blocks is oriented 49° west of true North (Fig. 2a). For sim-
plicity, the “building” walls are referred to hereafter by their nearest
cardinal direction relative to COSMO long axis orientation: S (229°), E
(139°), N (49°), and W (319°). Obviously, this deviation from the true
cardinal directions impacts shading patterns and related surface
warming effects. All surfaces are made of the same concrete, painted
grey (albedo= 0.1, ε7−13μm=0.89; Kawai et al., 2007). Surface
weathering effects (Fig. 2c) are likely to affect the radiative char-
acteristics, but the apparently random patterns are too small a spatial
scale to be accounted for in this study.

2.2. Real world instrumentation

Two Optris PI160 LWIR cameras (Optris GmbH, Germany) were
installed on an aluminium lattice tower at 6.8m and 7.0 m above
ground level (Fig. 2d) at opposing azimuth angles with oblique views of

ground, roof and all cardinal facing surfaces. Cameras are defined as
(Cnorth, Csouth) based on their azimuthal view angle (Fig. 2b). The
horizontal and vertical pixel resolution of the cameras ranges from
approximately 0.030m×0.043m to 0.079m×0.111m. The small,
lightweight industrial grade cameras use uncooled microbolometer
technology, with 25 μm×25 μm bolometer elements arranged as a
160× 120 focal plane array (FPA). With multiple cameras, multiple
view angles (e.g. Fig. 2b) can be sampled simultaneously in a static
setup (cf., rotating one sensor, Adderley et al., 2015; or vehicle tra-
verses, Voogt and Oke, 1997). The instrument outputs digital number
values for each microbolometer pixel. These values relate to at-sensor
broadband 7–13 μm radiance and are radiometrically calibrated by the
manufacturer to brightness temperatures [Tb

cam(x,y)] using black body
reference measurements. The per-pixel broadband longwave radiation
flux [MLW

cam(x,y)] is related to Tb
cam(x,y) by Stefan-Boltzmann law:

=M x y σT x y( , ) ( , )LW
cam

b
cam 4 (2)

with σ the Stefan-Boltzmann constant (5.67× 10−8Wm−2 K−4). The
temperature resolution is 0.1 K and the manufacturer's specified accu-
racy is 2 °C at ambient temperatures 23 ± 5 °C (Optris GmbH, Ger-
many). Although images can be captured at 120 Hz, for this study
images recorded every 60 s are used to reduce data overhead but cap-
ture temporal variability of MLW

cam caused by transient surface sha-
dowing. The manufacturer specified camera horizontal and vertical
FOV is 41°× 31°. Observations were taken between 2014/06/16 and
2014/09/26. In this paper, the focus is on a predominantly clear-sky
day (2014/08/02). Both cameras were connected to the same field
laptop for data acquisition via USB using the Optris PI connect software.

Multiple internal processing steps need to be considered to achieve
radiometrically calibrated measurements from LWIR cameras.
Uncooled microbolometer calibration and measurement processes are
reviewed by Budzier and Gerlach (2015). Here the quality control steps
undertaken are presented.

After a camera is sited, the FPA requires a “warm up” period to
allow the current induced self-heating of the sensor elements to stabi-
lise (Vollmer and Möllmann, 2010) prior to measurements. As labora-
tory testing found up to 2 h warm up period is required depending on
target and camera body temperature conditions (cf. manufacturer's
recommended 10mins), data prior to this are excluded. To correct for
changes in the contribution of interior radiance incident on the FPA due
to any change in the camera body temperature resulting from ambient
air temperature variability, a shutter inside the camera with assumed
black body characteristics and of known temperature obscures the
sensor before every measurement so that its emission is sampled.
The cameras are fitted with aluminum covers (enclosure:
945mm×45mm×62mm). These are designed to prevent lens ex-
posure to precipitation and any rapid, directional heating of the sensor
body due to direct sun exposure.

2.3. Model world site

To interpret MLW
cam for subsequent parameterisation and evaluation

of MLW
D3 , a MW is used. It has realistic surface-sensor geometry and

processes contributing to variability in MLW exitant across the RW
(COSMO) site. For a given RW point at 3D coordinates (X, Y, Z), the RW
radiative processes that determine MLW from the canopy surface
[MLW

D3 (X,Y,Z)] are approximated by assuming Lambertian facets, first
order scattering, isotropic sky thermal radiance, invariance of emis-
sivity across a broadband of thermal wavelengths and invariance of
emissivity with facet kinematic temperature, viz.:

= =

− ⋅ ⋅

+ − ⋅ ⋅

+ ⋅

↓

M X Y Z σT X Y Z
X Y Z X Y Z E

X Y Z X Y Z M

ε X Y Z σT X Y Z
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Fig. 1. Flow chart of procedures to estimate and evaluate exitant broadband
longwave radiation prescribed across an urban canopy (MLW

D3 ) using ground
based longwave infrared (LWIR) imagery coupled with camera view and 3D
modelling techniques. See list of symbols and acronyms for all other definitions.
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where Ψsky and Ψcan are sky and canopy view factors (Johnson and
Watson, 1984) that influence the radiant flux incident on RW point
(X,Y,Z); ↓ELW is broadband longwave irradiance from sky; MLW

can is
broadband longwave radiation emitted from surrounding canopy ele-
ments; Tb3D(X,Y,Z) and Ts

D3 (X,Y,Z) are the surface brightness and ki-
nematic temperatures for the given point; and ε(X,Y,Z) the broadband
surface emissivity for the given point. The COSMO test site (Fig. 2) and
observational period chosen enables Eq. 3 to be simplified: 1) the
homogeneous surface material allows ε(X,Y,Z) to be treated as constant
and isotropic, and 2) the high material emissivity reduces any varia-
bility in reflection contributions from ↓ELW and MLW

can. ↓ELW is assumed
isotropic in Eq. 3 as a simplification due to clear-sky conditions for the
study date. The remaining factors determining COSMO MLW

D3 (X,Y,Z) in
Eq. 3 (Ts

D3 , Ψsky and Ψcan) are highly variable across the site. To para-
meterise the variability of MLW

D3 in this paper, facets are classified by
their orientation using Blender (Blender Online Community, 2017) and
sub-facet insolation status (or shadow patterns) using the DART 3D
radiative transfer model (Gastellu-Etchegorry et al., 2012) (Fig. 1).
Combining Blender (version 2.78) and DART (version 5.6.6, build
v935) allows the 3D distribution of specific surfaces classes [i(X, Y, Z)]
to be determined across the site. i(X, Y, Z) is prescribed with similarly
classified observations to formulate MLW

D3 .
Two spatial reference systems defined in the MW by DART and

Blender facilitate the creation of i(X,Y,Z):

1) In both DART and Blender, the RW surface geometry is represented
by a vector-based digital surface model (DSM) of triangles in a 3D
mesh. This resolves surface geometry at a high level of detail
(Gastellu-Etchegorry, 2008) which is not limited to simple geometry
(e.g. Soux et al., 2004). A triangle face (S) is the planar area between
three vertices each with X, Y, Z coordinates (Fig. 3) with attribute Si
a determinable facet-scale surface class.

2) In DART, the MW is discretised into voxels Vx of uniform size in a

3D raster format (see Fig. 3; ΔX, ΔY, ΔZ; Yin et al., 2015). Surface
voxels contain surface elements of the DSM VxS (Fig. 3), whereas
other voxels only contain atmosphere. Voxels enable radiative
transfer processes to be calculated within DART at high (sub-facet
scale; < S) resolution. Surface voxels (Fig. 3) are used to track ra-
diation emitted and intercepted by S (Gastellu-Etchegorry, 2008),
meaning MW geometry is resolved by the DSM during simulation.
The prescribed surface temperature (VxT

S
s ) and sub-facet-scale sur-

face class information [i(X,Y,Z)] are stored by surface voxels.
Therefore, a surface voxel that occupies an area ΔX, ΔY, ΔZ of the
DSM stores surface class VxiS(ΔX,ΔY,ΔZ) and temperature
VxT

S
s (ΔX,ΔY,ΔZ) data. Simulated sources of emitted radiation can be

from any combination of sun, upper atmosphere, VxS and atmo-
sphere voxels. Here, sun angle and insolation are modelled by DART
to determine VxiS(ΔX,ΔY,ΔZ) for sunlit [Vxsunlit

S (ΔX,ΔY,ΔZ)] and
shaded [Vxshaded

S (ΔX,ΔY,ΔZ)] elements of the MW surface at a spatial
resolution of ΔX, ΔY, ΔZ=0.04m which is representative of the RW
observation spatial resolution (Section 2.2)

DART can simulate radiative transfer processes in the visible to LWIR
regions of the electromagnetic spectrum (Yin et al., 2015) in the atmo-
sphere and any urban or natural landscape. Individual rays are tracked
along discrete directions within angular cones (Yin et al., 2013). Land-
scape, or ‘bottom of atmosphere’ (BOA), illumination is due to direct and
diffuse sun radiation ( ↓ESW ) and ↓ELW . It is simulated as rays that flow
from a horizontal BOA layer at the top of the landscape (Fig. 3). The
surface density of these illumination rays is 1/D2, with D the BOA illu-
mination grid resolution. To simulate RW camera images taken above
the BOA layer (Fig. 3), rays that reach the BOA mesh layer are projected
onto a simulated camera IP (Yin et al., 2015). A comprehensive de-
scription of DART including further functionality beyond the scope of
this paper is provided by Gastellu-Etchegorry et al. (2015). DART
camera image simulation specifics are detailed in Yin et al. (2015).

7.0 m

6.
8 

m

1.5 m

1.
5 

m

θ 50.0 o
θ 50.9 o

1.5 m

10
0 

m

50 m

N
49oa b 

c d 

Camera

Source area

Fig. 2. COSMO test site and longwave infrared
(LWIR) camera observational setup: (a) test site
domain (plan view) with focus area (green box); (b)
focus area with LWIR camera (Csouth, Cnorth) loca-
tions and approximate orientations (blue) and
source areas (red) for camera field of view; (c)
north-west facing oblique visible image taken near
the Cnorth camera location and perspective (d) ver-
tical cross section of building array (grey squares)
showing instrument tower and camera geometry.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)
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2.3.1. Surface creation
The DSM was created using Blender, based on the known site geo-

metry (Section 2.1) and stored as a DART compatible “*.obj” wavefront
data format. Here the metadata stored by this format for each triangle
face includes facet orientation for the surface classification (Section
2.3.2). The DSM has the RW surface geometry (Fig. 2) for the full site
(X=50m, Y=100m, Z=1.5m), discretised into surface voxels using
the MW definition of DSM – voxel interaction (Fig. 3) at a resolution of
ΔX= ΔY= ΔZ=0.04m. The X axis of the voxel array is aligned with
the X axis of the DSM (Fig. 2).

2.3.2. Surface classification
The spatial and temporal class characteristics (orientation, surface

insolation state) allow a dynamic high spatial resolution 3D classifica-
tion of the MW surface as i(X,Y,Z).

DART stores local incident and intercepted radiation in two dif-
ferent ways. It stores the upward directional radiance per surface ele-
ment of the landscape, for simulating RS measurements. Also, the
landscape 3D radiative budget is stored: irradiance and exitance per
voxel upper face; and the radiation that is intercepted, absorbed and
emitted per voxel. Here, the DART simulated 3D radiative budget is
used to determine the sunlit or shaded status of VxiS(X,Y,Z) through
time, where i=sunlit or i=shaded. The sunlit and shaded areas of the
MW are resolved at the voxel size (ΔX= ΔY= ΔZ=0.04m, Section
2.3.1). Direct downwelling SW radiation ( ↓ESW dir, ) is simulated with
solar angles calculated using NOAA solar calculator equations (NOAA,
2016). Here, DART tracks BOA rays (mesh cell size D=0.02m) with
radiant flux density ESW(Ω,θ,ϕ) (Wm−2) along solid angle Ω (sr) with
direction (θ, ϕ) until incident on a DSM triangle. Hence, each triangle
intercepted ESW(Ω,θ,ϕ) is stored for the voxel that occupies the 3D
space of the triangle (Fig. 3) which across the entire scene produces a
3D array of voxels with values of intercepted irradiance (Wm−2). If a
surface voxel has stored no direct solar irradiance (i.e. cloud, night or
building obstruction) then the voxel is classified as shaded ( =Vxi shaded

S ),
otherwise it is sunlit ( =Vxi sunlit

S ). If RW geometry were more complex,
the classes could be split into discrete or binned values of irradiance
intercepted by a MW surface.

The surface orientation attribute of each triangle face S (Section

2.3.1) is one of the four cardinal orientations relative to north (e.g.
i=east) or horizontal orientations (e.g. i = roof). Blender is used to
determine the smallest angular difference between a triangle normal
and the normal of each orientation. Once classified, the DSM is used to
determine the orientation of sunlit or shaded voxels. Any sunlit or
shaded surface voxel intersected by Si is classified as a sunlit or shaded
voxel with orientation class i (e.g. =Vxi roof sunlit

S
, (X,Y,Z)).

2.4. Model world instrumentation

MW “instrumentation” is used to classify each pixel of a RW camera
observation by camera view modelling and to perform camera view
modelling of MLW

D3 for a given RS view angle. Here, a MW “instrument”
is defined as the simulation of a RW camera perspective using camera
view modelling. The RW camera images are classified at pixel level as i
(x,y) using basic pinhole cameras as the MW instruments. A basic
pinhole camera has a rectilinear projection, meaning any straight lines
in the MW domain are always projected as straight lines in the pinhole
camera IP. A comprehensive description of this technique can be found
in Hartley and Zisserman (2000). An overview of the steps taken to map
a MW domain surface element with coordinates (X,Y,Z) onto an IP with
pixel coordinates (x,y) is presented in Fig. 4. Common discrepancies
between a theoretical and RW camera are highlighted, with methods
given for the calibration of the low-resolution RW LWIR cameras to
perform as a pinhole camera (Section 2.4.1). Methods used to apply the
MW camera with the classified DSM (Section 2.4.3) are given along
with uncertainties associated with the alignment error between RW and
MW camera perspectives (Section 2.4.2).

All cameras have extrinsic and intrinsic parameters that determine
the (X,Y,Z)→ (x,y) coordinate transformation (Fig. 4). Extrinsic para-
meters of rotation (R) and translation (t) describe the rigid transfor-
mation of a 3D coordinate frame to a 3D camera reference frame
(X,Y,Z)→ (xc, yc, zc) with new coordinate origin Oc (Hartley and
Zisserman, 2000; Heikkila and Silven, 1993). RW cameras with physi-
cally small, wide-angle lenses exhibit radial distortion, meaning image
points are displaced radially in the IP. This type of projection is not
comparable to that of an ideal pinhole camera. Here, the camera in-
trinsics and lens distortion parameters are defined together as the

↓

↑

↓

↑

Lower atmosphere voxel

Surface voxel ) 

Triangle face 

Triangle-voxel 
juxtaposi�on

Pinhole camera perspec�ve of 

Image 
plane 
(IP)

Pinhole 
camera

Lower 
atmosphere 

& land 
surface

Upper atmosphere layers

TOA sun irradiance

BOA mesh 
layer

Sensor view

Fig. 3. Surface representation and interaction in the “model world” (MW) is defined by triangle face (S) and voxel (Vx) elements, with camera view modelling to
simulate camera image plane (IP). See table and text for symbol and acronym definitions.
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camera internal parameters, which must be estimated (Section 2.4.1).

2.4.1. Estimation of camera internal parameters
To formulate a MW camera, extrinsic and internal parameters must

be known or estimated. Extrinsic parameters of RW camera location
and orientation are determined by on-site measurements. Internal
parameters are required to match the RW image projection to a MW
pinhole camera. A method is presented to experimentally estimate the
internal parameters of a RW LWIR camera for correction of raw images
to a rectilinear pinhole projection. The method requires known para-
meters of physical FPA size (dFPA, mm) and image resolution (npx,
pixels) which are obtained from instrument specifications.

Camera internals are determined using a 0.5m×0.5m polished
steel plate (ε≈ 0.02) populated by squares of masking tape (ε≈ 0.95)
to produce a planar calibration grid of 8× 7 cells each
0.05m×0.05m. This configuration allows a grid cell corner to be
identified as (Xo, Yo, Zo) in camera (x, y) coordinates (Fig. 4). When
placed outside on a clear or totally overcast day, the grid pattern can be
observed in the LWIR due to the emissivity contrast between steel and
masking tape. Images are taken until the grid has been captured by all
parts of the LWIR camera IP at different rotations (~25 images per
camera). Captured images are processed with the Matlab camera cali-
bration toolbox (Bouguet, 2015) to map each grid cell corner, (Xo, Yo, Zo)
to (x, y) coordinates. Estimated camera extrinsic and internal para-
meters are used to transform the image using the Matlab toolbox. Grid
corner points are again detected in this transformed image and com-
pared to points projected onto the IP by the estimated extrinsic and
internal parameters. This is an iterative process that stops when the
error between detected and projected points is minimised in the least
squares sense. The internal parameters applied to achieve this “best fit”
between detected and projected points are assigned as the camera

internal parameters enabling it to be treated as a pinhole camera.
The specified FOV (Section 2.2) decreases when images are trans-

formed to pinhole projections (Table 1). The FOV is determined by
obtaining the focal length (F) from the calibrated pixel scaling factor (s)
and the known FPA size (dFPA) in the image x or y coordinate directions
with known FPA resolution (npx) in the image x or y coordinate direc-
tions:

=F s d n( / )FPA
px (4)

which is related to the camera FOV (radians) in the image x or y co-
ordinate direction by:

=FOV arctan d F2 ( /2 )FPA (5)

The derived internal parameters are used to re-map each pixel from
each RW image using the nearest neighbour technique.

2.4.2. Reprojection error
Assuming internal parameters have been accurately accounted for

(Section 2.4.1), any misalignment between RW and MW camera per-
spectives depends on the prescribed MW camera extrinsic parameters of
(β, φ, ω) rotation (R) and (X, Y, Z) translation (t) shown in Fig. 4. These
parameters can be determined from RW measurements. An uncertainty
in these measurements translates as an error in the MW camera per-
spective. A misalignment error based on estimates of uncertainty as-
sociated with on-site measurement of camera extrinsic parameters is
calculated in root mean square error (RMSE) terms. Firstly, the extrinsic
parameters for camera Csouth (Fig. 2) measured on site are defined as
“aligned” parameters. It is assumed that measurements of camera lo-
cation (performed using a tape-measure) have an estimated measure-
ment uncertainty of 0.1 m for each location axis. (β, φ) are estimated
from azimuth and zenith angle measurements (θ, ϕ) taken using a
compass and protractor, respectively. Cameras are installed with no
intentional rotation around the camera axis (ω). Each rotation has an
assumed uncertainty of 1°. To quantify the impact of this assumed R and
t measurement uncertainty, all possible permutations of these rotations
and translations are determined at resolution of Δ° = 0.5 (e.g.
[β− 1°]→ [β+1°], Δ° = 0.5) and Δm=0.05 (e.g. [X− 0.1 m]→ [X
+0.1m], Δm=0.05). For each permutation, all roof vertices of the
DSM (X, Y, Z) are updated with new MW coordinates (X′, Y′, Z′) by
rotating and translating each DSM roof vertex around the camera origin
Oc (Fig. 4) based on the permutation-specific (R, t) values. The Eu-
clidean distance d between the original and updated vertices, where:

= ′ − + ′ − + ′ −d X X Y Y Z Z( ) ( ) ( )2 2 2 (6)

is used to quantify the misalignment RMSE. Only roof vertices are
analysed as occluded surfaces cannot be tracked from the camera per-
spective. With this degree of uncertainty, the maximum RMSE between
all roof vertices within the camera FOV is 0.43m. A final adjustment of
simulated (R, t) extrinsic parameters is needed as this error is sig-
nificant. This is challenging given that (R, t) combine to give a high
number of degrees of freedom. Adjustment is done using the experi-
mentally derived (R, t) parameters applied to a Blender pinhole camera
perspective of the DSM. A RW camera image corrected to pinhole
camera projection (Section 2.4.1) is made semi-transparent and then
draped over the Blender camera FOV. The camera is then moved in-
teractively around the DSM allowing (R, t) to be manually adjusted as a

φ

β
ω

Rigid
transfor n

Pr
transfor n

Image plane 
coordinates

Camera
coordinates

)

World 
coordinates

World
ordinates

, , )

Fig. 4. Coordinate and transformation definitions for “model world” elements.
(X, Y, Z)→ (xc, yc, zc) is the rigid transformation from the three-dimensional
coordinate frame with origin O, to the three-dimensional camera coordinate
frame with origin Oc using camera extrinsic parameters of rotation R and
translation t. (xc,yc,zc)→ (x,y) is the projective transformation from camera
coordinate frame to two-dimensional camera image plane (IP) frame (yellow).
R represents a series of Euler angles β, φ and ω that define a sequence of ro-
tations: first around the xc-axis (β), then around the yc-axis (φ′) that has already
been rotated by β, and finally around the zc-axis (ω″) that has already been
twice rotated firstly by β and then φ′ (Heikkila and Silven, 1993). t is a vector
that describes the MW origin (O) as camera coordinate origin (Oc). Intrinsic
parameters of focal length F, pixel scale factor (Eq. 4) and principle point offset
are used for the final projection of 3D points onto the 2D camera IP as (xc, yc,
zc)→ (x, y). These parameters are determined by physical camera features in-
cluding pixel size and the relative position of the IP to Oc. The point at which
the principle axis (zc) intersects with the IP is the principle point P (Hartley and
Zisserman, 2000). For a pinhole camera, P intersects at the centre of the IP. For
RW cameras, the principle point offset describes the offset between P and the
centre of the IP which may arise from imperfections in the lens-FPA assembly.
This results in a misalignment of the lens with the FPA (Clarke et al., 1998) and
hence needs to be accounted for. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 1
Field of view of undistorted pinhole camera equivalent LWIR cameras used in
the study. See text for methods. See Fig. 2 for camera locations.

Camera ID Undistorted FOV

Horizontal (°) Vertical (°)

Cnorth 41.4 31.6
Csouth 40.5 30.9
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supervised final alignment. A new alignment uncertainty when ex-
trinsic parameters are manually adjusted is assumed<0.1° for each
rotation and < 0.05m for each location parameter (RMSE<0.06m).
This method yields good alignment results when comparing the pro-
jected geometry for RW (Fig. 5a, e) and MW (e.g. Fig. 5b, c) imagery,
which is further evaluated using high resolution digital camera imagery
(Fig. 6).

2.4.3. Classification of camera images
The classified MW surface (Section 2.3.2) is projected onto a MW

camera IP to facilitate RW image classification. MW cameras are cre-
ated using Blender and DART to simulate the RW camera per-pixel
perspective of orientation (e.g. Fig. 5b) and shadowing (e.g. Fig. 5c)
attributes, respectively.

The 3D rendering capabilities of Blender are used to classify images
by surface orientation. All triangle faces of the DSM within an or-
ientation class i (Si, Section 2.3.2) are assigned a colour with a specific
RGB value. The DSM is then projected onto each MW camera IP to
produce images with per-pixel RGB values related to each orientation
class (Fig. 5b, f) which enables per-pixel surface classification as i(x,y).
The instantaneous field of view (IFOV) of some pixels within these
images contain more than one surface class. This effect translates as
pixels without a RGB value associated with a single class. Pixels with
this characteristic are classified as “mixed”. The radiometer boom
within Csouth observations (Fig. 5a) is manually masked. Mixed and
masked pixels are not included as part of any surface class.

Sunlit and shaded pixels for each RW image are classified using the
3D distribution of sunlit and shaded surfaces from the DART simulation
of direct downwelling SW radiation (Section 2.3.2). DART camera view
modelling enables the 3D distribution of sunlit and shaded surfaces to
be projected onto the MW camera perspective (Fig. 5c, g). First order
scattering of ESW(Ω,θ,ϕ) from a surface is considered during the image
classification, with DSM triangles being assigned as Lambertian re-
flectors in DART. Scattering from the surface occurs isotropically with
exitance ↑MSW (Wm−2):

∫=↑M E Ω dΩ( , θ, ϕ) · cosθ · .SW π SW2 (7)

Due to first order scattering, any pixels of the DART MW camera
with at-sensor radiance>0Wm−2 sr−1 originates from a sunlit voxel
( ↑MSW > 0Wm−2) intersected by a sunlit portion of the DSM. The
IFOV of pixel (x,y) with at-sensor radiance> 0Wm−2 sr−1 is therefore
classified as observing a sunlit surface (e.g. Fig. 5b). Isolated pixels (i.e.
no adjacent pixels of the same class) are reclassified as “mixed” as it is

assumed there is insufficient spatial representation of the surface class
from one pixel. The DART modelling of shadow distributions is eval-
uated in the RW using a Panasonic DMC-TZ31 digital camera image
taken during clear sky daytime conditions (Fig. 6a). The digital camera
is assumed to exhibit pinhole camera characteristics. Shadow dis-
tributions across the image are then classified using a DART MW
camera using manufacturer derived internal camera parameters. The
illuminated surface geometry and distribution of shadow patterns
visible in the MW camera image (Fig. 6b) agree with the digital camera
image (Fig. 6a).

3. Longwave radiation flux extrapolated to 3D distribution

Data from classified images (Section 2.4.3) are used with the clas-
sified MW surface (Section 2.3.2) to produce MLW

D3 at high spatial re-
solution. Pixels classified as class i(x,y) within each MW camera image
are associated with observations from the RW LWIR camera to obtain
classified RW MLW

cam(x,y) in the form MLW i,
cam (x,y). The mixed and masked

pixels (Fig. 5b, f) are not considered. All pixels for a given class from all
cameras are aggregated to a mean value ∼MLW i

cam
, . Voxels of class i are

assigned MLW i,
cam to resolve per-voxel MLW, shown in Fig. 7 as brightness

temperatures. This product constitutes MLW
D3 for a given time step. A

voxel may be intersected by two or more triangles with faces of dif-
ferent class, which can occur at the corner of a building (Fig. 7). In this
case, the mean of ∼MLW i

cam
, for all classes involved is calculated for these

voxels. This causes the unique brightness temperature values at inter-
secting facets with different orientation and temperature (Fig. 7).

The view angle configuration of the RW cameras (Fig. 2) and the
nature of allocatable surface classes means the classes assigned in 3D
space VxiS(ΔX,ΔY,ΔZ) are always observed by a camera for any given
time step. The spatial form of MLW

D3 is inherently linked to the DSM
(Fig. 3) meaning the methodology is applicable to complex geometry
and limited only by the voxel resolution and DSM level of detail.

4. Results and discussion

The methodology is applied using observations referenced at local
time for 2nd August 2014 (day of year 214). This is a mostly cloud-free
day following an extended dry period of cloudy and part-cloudy days.
The short time period is chosen to ensure the high temporal resolution
of observations is fully applied and resolved.

a b c

-1          -0.5           0            0.5           1
Fig. 6. Images of COSMO test site taken at 15:25 local standard time on 26th September 2014 with approximate Cnorth perspective (Fig. 2) from (a) a “real world”
(RW) digital camera and (b) simulated by a “model world” (MW) camera in the shortwave using the Discrete Anisotropic Radiative Transfer (DART) (Gastellu-
Etchegorry et al., 2012) model to compare the performance of DART when 1) simulating RW camera perspectives 2) resolving shadow patterns at high spatial
resolution (0.04m) across a canopy surface. Greyscale intensity (b) is used for qualitative indication of shaded (black) and sunlit (grey→white) surfaces. Comparison
(c) shown as RW – MW greyscale intensity difference.
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4.1. Image classification

The classification methodology enables quantitative identification
of the surface types seen by each camera on a per-pixel level. Fig. 8
summarises the fraction of pixels assigned to each class within each
camera image. Differences in the inter-camera pixel fractions assigned
to each class can be explained by the location and orientation of each
camera. Cnorth views the higher fraction of ground and roof surfaces
(53.80%, 10,327 pixels) due to the lower camera zenith angle (Fig. 2).
Camera Csouth views a higher fraction of vertical surfaces (37.44%,
7190 pixels). Mixed pixels make up 29.12% (Csouth) and 20.11% (Cnorth)
of the images. Mixed pixels are identified during image classification of
surface geometry (e.g. Fig. 5b) and if any classified pixels are isolated
(Section 2.4.3). Csouth imagery contains 528 (2.75%) masked radio-
meter boom pixels and more mixed pixels than Cnorth. This is explained
by its higher zenith angle and therefore longer average path length.
Surfaces further away from the camera are more likely to be mixed
within each pixel IFOV.

When a vertical surface first becomes insolated, the incident ra-
diation is low as the angle of incidence is near parallel with the surface.
In the MW, this is associated with a low density of DART illumination

rays (Section 2.3.2) incident on these surfaces which introduces erro-
neous patterns in surface insolation status. Until the density of rays is
sufficient across the MW surface, some pixels may be isolated from
other pixels of the same insolation class. This explains the observed
temporal variability in mixed pixels that coincides with walls coming
into, and out of, shade. It could be corrected by increasing the surface
density of illumination rays in the DART SW simulations (Section 2.3.2)
at the expense of computation time. With the given MW resolution, the
effect occurs twice for both cameras around 10:00 and 13:00. Each
period has a ~10min duration that increases mixed pixels across each
image by up to 9% (Fig. 8). Afternoon periods when all non-mixed
pixels are intermittently classified as shaded are caused by short periods
of overcast conditions based on direct incoming SW radiation (Fig. 9a)
measurements taken at the COSMO test site using a MS-56 Pyrheli-
ometer (EKO Instruments).

4.2. Inter-camera comparison

MLW
cam agreement between instruments using manufacturer derived

calibration coefficients (Section 2.2) is evaluated using measurements
taken during the study day. Given the camera fields of view did not
overlap, contact thermocouples were installed to give reference mea-
surements enabling comparison of the camera calibrations. Un-
fortunately, instrumentation issues resulted in complete data loss from
the thermocouples. Roof facets have a highly uniform radiative en-
vironment across the whole COSMO test site and offer the best available
comparison to evaluate camera agreement (Fig. 9). Camera heights and
zenith angles are similar (Section 2.1) with 19.86% and 22.26% of
image pixels classified as roofs for Csouth and Cnorth, respectively
(Fig. 8). Results show a systematic difference (slope 1.07, intercept
−22.01 K) between observations of the roof pixels by the two cameras
(Fig. 9). The camera calibration sensitivity to camera body temperature
in an outdoor setting is likely the primary contributor to the instrument
uncertainty seen with the setup at COSMO (2 K). This translates into
systematic differences in the observations and a hysteresis effect
(Fig. 9). Potentially rapid and uneven changes in temperature across
each camera body cannot be fully accounted for by the camera cali-
bration routine (Section 2.2). Other contributing factors, which cannot
be easily quantified at this observational scale using the classification
approach adopted, include differences in roof emissivity from surface
weathering effects and anisotropy in surface emissivity (Nakayoshi
et al., 2015). To reduce the impact of any systematic sensor disagree-
ment on the extrapolated MLW

D3 product, Cnorth is corrected to Csouth by
linear regression using observations of the roof pixels from each camera

Fig. 7. Per-voxel brightness temperature (VxTb
S ) extrapolated from observations

for one time-step (2nd August 2014 10:00 local time, same as Fig. 5) for an
arbitrary 8m×8m subset of the “model world” (MW) domain visualized as a
three-dimensional point cloud, with each point at the centroid of a voxel.
VxTb

S (ΔX,ΔY,ΔZ) resolved at ΔX= ΔY= ΔZ=0.04m spatial resolution.

C

Fr
ac

�o
n 

Class 

C

Local �me

Fig. 8. Fraction f of all pixels in a camera image assigned to surface class i for cameras Csouth and Cnorth for 2nd August 2014 at local standard time. Resolution of
classified images is 1min. Short periods of daytime shadow due to overcast periods determined from [ ↓ESW dir, (COSMO)] observations (Fig. 9). Mixed pixels contain
more than one surface class or are isolated pixels (Section 2.4.3).
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(Fig. 9). This approach is considered reasonable within the scope of the
study as inter- and intra-facet variability is retained, and sensor specific
biases are minimised.

4.3. Classified brightness temperature observations

Variability of inter-class and intra-class observations is shown in
Fig. 10 on a per-pixel level for all cameras throughout the study date
(mixed and masked pixels are excluded). As expected, the variability of
the pre-classified pixels for all cameras (Fig. 10a) is greatest during the
daytime, with hourly differences between the 5th and 95th percentiles
of pixel distributions reaching 18.4 K between 12:00–13:00. With in-
creasing level of spatial detail in pixel classification accounting for in-
solation status (Fig. 10b), orientation (Fig. 10c) and both combined
(Fig. 10d), the inter-class ranges of Tb

cam typically decrease. This sug-
gests the class related differences are helpful in explaining some of the
Tb

cam variability. Brightness temperatures are most variable for the
ground pixels (Fig. 10c), with shaded or sunlit ground surface pixel
distributions (Fig. 10d) both being large throughout daytime. Hourly
differences between 5th and 95th percentiles reach 15.0 K (12.2 K) for
all shaded (sunlit) ground surface pixels between 12:00–13:00
(11:00–12:00). The shadowing history is associated with this varia-
bility, with a thermal hysteresis effect due to the thermal inertia of
concrete. For example, between 14:00–15:00, the 25th percentile of
sunlit pixels have similar values to the 75th percentile of shaded pixels.
The greater sky view factor of roofs compared to all other facets in-
fluences inter-class variability, with median brightness temperature of
roof pixels up to 2 K lower than all other classes between 00:00–05:00
(sunrise 04:55). Similarly, daytime roof brightness temperatures are
highest (median=330.8 K, 13:00–14:00, Fig. 10c) and for this time
interval 15 K greater than north wall facet temperatures.

4.4. Extrapolated longwave radiation flux

The parameterisation of MLW
D3 is evaluated by modelling its upwel-

ling LWIR radiation projected onto the IP of MW cameras. The per-pixel
MW camera perspective is MLW

cam(MW,x,y) (i.e. Fig. 5d, h). MLW
cam(RW) is

extrapolated to MLW
D3 (Section 3) with per-pixel differences calculated

[MLW
cam(RW,x,y)− MLW

cam(MW,x,y)] as an evaluation step. Fig. 11
shows brightness temperature differences [i.e. Tb

cam(RW,x,y)−Tb
cam

(MW,x,y)] at six times during the case study day. Nighttime period per-
pixel RW - MW brightness temperature differences never exceed± 1 K
(not shown) due to the low intra-class variability (Fig. 10d). Daytime
per-pixel RW−MW differences are evident and indicate some RW
processes remain unresolved by MLW

D3 . Areas within the imagery where
Tb

cam(MW) underestimates Tb
cam(RW) (red) or where Tb

cam(MW) over-
estimates Tb

cam(RW) (blue) include edges of building blocks, edges of
shadows and locations across all ground surfaces. Tb

cam(MW) typically
underestimates Tb

cam(RW) for top-of-wall pixels. Absolute maximum
differences between Tb

cam(RW) and Tb
cam(MW) can reach 15 K for in-

dividual pixels within both Csouth and Cnorth imagery, with 1st and 99th
percentiles −4.34 K and 4.97 K, respectively. There are artefacts in MW
camera imagery around all roof edges that face away from the cameras
(e.g. Fig. 5d, h). These are caused by the resolution of MLW

D3 and DART
discretisation of LWIR surface exitance and explain some of the large
absolute differences around roof edge pixels. The camera point spread
function may impact how well the intersection between facets of con-
trasting temperatures are resolved but was not available from the
manufacturer for further investigation. This effect coupled with any
slight misalignment between RW and MW cameras (Section 2.4.2) may
compound to explain highTb

cam(RW)−Tb
cam(MW) differences near facet

edges.
Surface energy exchange processes may further contribute to

Tb
cam(RW)−Tb

cam(MW) differences near facet edges. The building
blocks are hollow causing different thermal admittance at their edges.
Further, the edges of buildings may be exposed to higher wind speeds
which modify heat transfer and therefore surface temperature. In ad-
dition, roof edges on the sunlit side of buildings have distinctly high
observed brightness temperatures (e.g. Fig. 5a, e) associated with the
different sky view factors. Maximum brightness temperatures for mixed
pixels at these building edges are up to 7.4 K (13.3 K) higher than the
median of intersecting roof (wall) facets at 13:35. This may be ex-
plained by high solar irradiance (high sky view factor) and absorption
of these areas throughout the day.

Fig. 9. Inter-camera comparison of the mean broadband longwave radiation derived from roof pixels within the FOV of both cameras shown as (a) brightness
temperatures (Tbroof

cam ) for Csouth (black) and Cnorth (red) surfaces with observations at 1min resolution. Direct incoming shortwave radiation [ ↓ESW dir, (COSMO)]

measured on site using MS-56 Pyrheliometer (EKO Instruments) at 1min resolution. Japan Meteorological Agency (JMA) air temperature measurements [Ta (JMA)]
measured at Kumagaya AMeDAS (Automated Meteorological Data Acquisition System) station at 1 min resolution. (b) Relation between Tbroof

cam (Csouth) and Tbroof
cam

(Cnorth) with linear regression slope (m) and intercept (b) coefficients, used to correct the observations used throughout all results. In this figure observations are
shown uncorrected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Closer to the ground, wall view factors are larger and ground sur-
face reflection captured by Tb

cam(RW) is more important. Surfaces in
these regions receive radiation from regions with cooler surface tem-
peratures that have been in shade for prolonged periods (e.g. Fig. 11e),
and from regions with warmer surface temperatures that have been

sunlit for prolonged periods (e.g. Fig. 11i). The large distribution of
brightness temperatures for observed ground pixels (Fig. 10c, d) is not
represented in MLW

D3 which only contains information on mean values of
MLW i

cam
, (Section 3). The errors associated with this assumption are seen

in Fig. 11 mainly for shaded ground pixels and ground pixels at the

Fig. 10. Intra-class variability of camera brightness temperatures (Tb
cam) on 2nd August 2014. Each boxplot is all pixels assigned to a class (colour) from both cameras

(images 1min samples) during 1 h, with 5 and 95 percentiles (whiskers), interquartile range (box) and median (horizontal line) for pixels classified by: (a) all, (b)
surface insolation status, (c) surface orientation, and (d) orientation and insolation status.
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edges of buildings. A shadow hysteresis is evident at multiple time steps
(e.g. Fig. 11d centre block, Fig. 11i front centre block) as brightness
temperatures of surfaces coming out of (into) shade are overestimated
(underestimated) by MLW

D3 .
The extent to which these unresolved sub-facet processes influence

the directional brightness temperature aggregated across each IP of
Tb

cam(MW) is subsequently investigated. The aggregated at-sensor
brightness temperature (∼Tb

cam
) for Tb

cam(RW) and Tb
cam(MW) view is de-

termined at 15min resolution for the whole day (Fig. 12). ∼Tb
cam

is the

mean of all non-masked pixels in a camera IP. This analysis is similar to
results demonstrated for existing sensor view modelling approaches
(e.g. Soux et al., 2004). In this paper, −

∼ ∼T T(RW) (MW)b
cam

b
cam

differ-
ences show a diurnal pattern (Fig. 12). When MLW

D3 is prescribed using
insolation and orientation (solid lines, Fig. 12), RW−MW differences
reach±0.65 K during daytime at 12:45 for Cnorth, and are within
0.40 K during nighttime. Prescribing MLW

D3 based only on orientation
(dashed lines, Fig. 12; shown as inter-class distributions at pixel level in
Fig. 10c) leads to good agreement at night when inter-class variability is

Fig. 11. Brightness temperature (Tb) differences between LWIR camera observations from “real world” (RW) [Tb
cam(RW)] and “model world” (MW) for six times (see

labels on sub-plots) on 2nd August 2014, for camera (a–f) Csouth and (g–l) Cnorth. Tb
cam(MW) is simulated by DART camera view modelling using predetermined 3D

distribution of longwave flux (MLW
D3 ). (a–f) Radiometer boom masked (grey) from results. Boxplot (inside legend) for all non-masked pixels within all time steps

throughout the day (15min resolution) with 1st and 99th percentiles (whiskers), interquartile range (box) and median (horizontal line).
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small and shadows do not occur. During daytime, however, not ac-
counting for shadow patterns means ∼T (MW)b

cam
is up to 0.90 K warmer

(cooler) than ∼T (RW)b
cam

for Csouth (Cnorth) at 12:45.

4.5. Normalised effective anisotropy

Apparent brightness temperatures viewed from the COSMO surface
over multiple discrete directions (375 directions over the hemisphere)
are simulated using DART and MLW

D3 . The apparent brightness tem-
perature for a direction is the parallel projection of MLW

D3 onto a plane
that is perpendicular to the view direction, aggregated to a single di-
rectional brightness temperature value. Here a 29.5m×29.5 m sample
of MLW

D3 is analysed. The normalized effective anisotropy (Fig. 13) is
defined as the apparent brightness temperature from a nadir view
minus the apparent brightness temperature at a given direction. Mod-
elled values of normalised effective anisotropy range from −6.10 K
(12:30) to 3.41 K (08:00) on the case study day, with a maximum dif-
ference between any direction of 6.18 K (13:00). Lowest directional
brightness temperatures occur at high zenith angles and at azimuth
angles near the sun position. This is in agreement with prior results
(Voogt, 2008). Around midday and early afternoon (e.g. 12:00, 14:00),
view angles with high zenith angles (ϕ > 40°) near each cardinal
azimuth angle underestimate nadir view brightness temperature by up
to 6 K. This is likely caused by the cooler walls occluding the warm
ground surfaces at these view angles. A “hot spot” around the sun angle
is prominent during morning periods (08:00, 10:00) where brightness
temperature differences between currently insolated facets and shaded
facets is greatest. Inter-facet temperature differences are lower during
afternoon, reducing the magnitude of any hot spot (14:00, 16:00).
These examples highlight a critical application of the modelling ap-
proach presented to any thermal RS study in a real urban setting.

5. Conclusions

The exitant longwave radiation from a simplified urban surface
(COSMO outdoor scale model) is studied based on ground-based LWIR
camera observations with detailed radiative transfer and camera view
modelling. Ground based LWIR camera (MLW

cam) observations from the
COSMO test site over 24 h illustrate spatial and temporal patterns in
upwelling LWIR radiation.

Hourly per-pixel camera brightness temperatures are low at night,
but vary more widely during the day (5th - 95th percentile differences
reach 313.05–331.45 K between 12:00–13:00). As shadows cast by
buildings and facet orientations likely explain most of this observed
variability, these are often used to parameterise kinematic and radio-
metric temperature variability across the complete urban surface. Here,
radiative transfer and camera view modelling is undertaken to identify
the sunlit/shaded dynamics of camera pixels. The nature of inter-class
and intra-class MLW

cam distributions derived from the modelling results
suggest that manual digitization or frequency distribution analysis may
be problematic, particularly during daytime when inter-class distribu-
tions frequently overlap. This effect is most prominent for distributions
of sunlit and shaded ground pixels.

Despite the simple surface geometry of the study site, image clas-
sification by camera view modelling demands small margins of error for
camera parameters such as image distortion (Section 2.4.1) and the
physical positioning of cameras (Section 2.4.2) for the perspective of
MLW

cam to be modelled accurately. This finding can be attributed to the
short surface-sensor path lengths of the observational setup. Further-
more, sun-surface geometry and the timekeeping of observations must
be known to a high degree of accuracy. Previous studies have not de-
monstrated direct comparison of observed and simulated results in such
detail.

Methods in this paper overcome sensor view modelling challenges
by using the DART and Blender camera view models. A comparison
between a captured and modelled high resolution digital camera image
(Section 2.4.3) demonstrates the potential accuracy and resolution of
the methods. Evaluating the ability of classified MLW

cam observations to
explain the variability of broadband longwave radiation exitant across
the COSMO canopy surface uses the 3D distribution of exitant LWIR
radiation (MLW

D3 ). It is concluded that MLW
D3 accurately resolves the sur-

face geometry of the test site when the parameterisation is at high
temporal (15min) and spatial (0.04 m) resolution. MLW

D3 is evaluated for
a given time step by projecting prescribed values of exitant broadband
longwave radiation onto simulated “model world” (MW) cameras with
perspectives matching that of the “real world” (RW) MLW

cam. Pixel level
comparison between RW and MW camera imagery identifies areas
where the prescribed MLW

D3 does not resolve MLW
cam variability; viz.,

building edges, sky view factor variability of vertical surfaces, and
ground areas with a distinct shadow hysteresis. By aggregating all
pixels in each image to a single brightness temperature for each MW
and RW camera, these features average out to RW−MW differences
within 0.65 K throughout a 24 h period. Understanding unresolved sub-
facet processes may be required for parameterisation of MLW

cam in more
complex urban environments. Further classes of absolute irradiance
values and sky view factor have potential to be applied using DART.

MLW
D3 coupled with DART is shown to be a useful for assessment of

urban thermal anisotropy (Section 4.5). Modelled anisotropy results for
the study day show large differences between nadir and off-nadir ap-
parent brightness temperatures which in general is in good agreement
with prior studies. Modelled anisotropy is simplified in that it does not
consider irregular building geometry and materials found in real cities.
The regularity of the COSMO geometry may introduce an over-
estimation of modelled anisotropy compared to real world cities
(Krayenhoff and Voogt, 2016).

It is concluded that shadow histories classes and further quantifi-
cation of surface irradiance fluxes using DART radiative transfer func-
tionality would be useful to address in future studies. Depending on the
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legend, the reader is referred to the web version of this article.)
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availability of spatial databases, building geometry and material
properties can also be resolved at levels of detail representative of
complex urban environments. Material properties may be challenging
to obtain due to a general lack of urban materials spatial databases. If
the surface form is a predominant factor in effective thermal aniso-
tropy, simplified assumptions of surface material may be sufficient
when classifying MLW

cam and parameterising MLW
D3 for complex urban en-

vironments.
Applying the methods presented in this paper to real cities may

require a different approach to sensor siting. The current study uses a
mast as a sensor platform that is ~4 times the mean building height
(Fig. 2). This enables an observational source area that is representative
of the domain and that resolves sub-facet processes. A similar source
area could be achieved in urban areas with compact low-rise and open
high-rise morphology, with cameras installed on top of the taller high-
rise buildings.

Overall, this work provides a significant improvement to inter-
preting ground-based RS observations. Applied to real city settings, this
has the potential to provide essential improvements to evaluating errors
associated with operationally retrieved urban surface temperatures
from satellite RS platforms and the parameterisation of longwave ra-
diation exchanges in urban surface schemes.
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List of symbols and acronyms [units]:

β, ϕ, ω Euler angles describing a sequence of rotations within the (xc,
yc, zc) coordinate frame

BOA Bottom of atmosphere
BRF Bidirectional reflectance factor
C Non-specific camera
COSMO COmprehensive urban Scale MOdel
dFPA Camera focal plane array size [mm]
DART Discrete Anisotropic Radiative Transfer model (Gastellu-

Etchegorry et al., 2012)
DSM Digital surface model
ε Emissivity

↓ELW Broadband longwave radiation flux (irradiance) downward
from sky [W m-2]

↓ESW Broadband shortwave radiation flux (irradiance) downward
from sky [W m-2]

↓ESW dir, Broadband direct shortwave radiation flux (irradiance)
downward from sky [W m-2]

F Camera focal length [mm]
f Fraction
FOV Field of view
FPA Focal plane array
i Nonspecific surface class
IFOV Instantaneous field of view
IP Image plane
λ Wavelength [μm]
LW Longwave
LWIR Longwave infrared

MLW Broadband longwave radiation flux (exitance) from a surface
[W m-2]

MLW
D3 Broadband longwave radiation flux (exitance) from discrete

points of an urban surface, resolved in 3D [W m-2]
MLW

cam Camera derived broadband longwave radiation flux (exi-
tance) [W m-2]

MLW
can Non-specific broadband longwave radiation flux (exitance)

from urban canopy elements [W m-2]
↑MLW Broadband longwave radiation flux (exitance) upward from

ground [W m-2]
MLW

RS Nonspecific (e.g. satellite) remote sensing derived broadband
longwave radiation flux (exitance) [W m-2]

↑MSW Broadband upwelling shortwave radiation flux (exitance)
upward from ground [W m-2]

MSW Shortwave radiant flux (exitance) from a MW surface element
[W m-2]

MW Model world
O Origin of model world domain coordinate frame
Oc Origin of camera intrinsic coordinate frame
P Camera principle point
ϕ Zenith angle
Ψsky Sky view factor
Ψcan Canopy view factor
R Camera rotation parameters
RGB Red, green, blue
RW Real world
s Camera pixel scaling factor
S Triangle face of vector model
SW Shortwave
t Camera translation parameters
τ Transmissivity
Tb Brightness temperature [K]
Tb

cam Camera derived brightness temperature [K]
θ Azimuth angle
TOA Top of atmosphere
Ts Thermodynamic surface temperature [K]
Ts

D3 Thermodynamic surface temperature at discrete points of an
urban surface, resolved in 3D [K]

Vx Voxel (a volume element)
VxS Voxel intersected by a digital surface model element (surface

voxel)
X, Y, Z Model world domain coordinate frame
x, y Camera pixel coordinate frame
xc, yc, zc Camera intrinsic coordinate frame
zc Camera principle axis
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